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for neutral solution of the equations of stability in the form 

L=O 
where 

L = (rl - P + &‘) IT3 - p - 2746 - ‘/a (5 - 63) 6-’ $ fM? + %4 T3 (6k2 + ck&k- &“,)I - 

- ‘h [l/4 eke-’ + 7’4 (2t, - $,k) - fQr2 (58, + tick - 2&k + &k)l” 

The critical value of p is determined from condition (11). If however the condition 
L = 0 is not satisfied, then, as before, p is determined from the condition of minimum 

of the value L. 
Results of calculations of critical value p according to condition (11) are presented 

in Fig. 5. Each curve in Fig. 5 consists of two parts : the first (before the corner point) is 

determined by the condition L = 0, the second by the condition Lmine Comparing 
results of calculations according to conditions &f = 0 (Fig. 4) and L = 0 (Fig. 5), it is 

possible to draw the conclusion that the linearization of equations of the precritical state 

gives acceptable results only in a relatively small region of small values of deflections 
&. Naturally, for <,,k = 9 the results of calculations coincide completely because in 
this case the starting equations are the same. 
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The rotation of a rigid sphere around its diameter with small angular deflection from 
stationary position is examined under the influence of an elastic force couple in a vis- 
cous medium bounded from the outside by a concentric stationary sphere. 

The spectrum of oscillations is investigated in detail. The spectral distributions of 
angular velocity of the sphere are obtained for any positive value of parameters of the 
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problem. In thfs connection a qualitative analogy is established between the motion of 
the sphere and a plane osciIlating between parallel walls, 

In connection with viscosity measurements of gases Maxwell carried out a mathema- 
tical analysis of small rotational oscillations for a rigid flat disk suspended by an elastic 
thread in a viscous fluid which is confined between parallel stationary planes. Maxwell 
assumed that the disk executes harmonically damped oscillations. He derived the char- 
acteristic equations for the oscillation of the disk and obtained approximate equations 
for calculation of viscosity for the case where the complex root of the characteristic 
equation is given from an experiment (13. 

With the same purpose Verschaffelt examined the problem of small rotational oscilla- 
tions of an elastically coupled rigid sphere in a viscous fluid bounded by a concentric 
stationary sphere @& He applied the obtained results to viscosity measurements of dilute 
gases. 

fn view of the theoretical and practical interest of problems partially examined in fl] 
and [2], it was desirable to formulate and solve these problems with consideration of ini- 
tial conditions without assuming in advance the angular velocity of the rigid disk or 
sphere to be exponential with a complex index proportional to time. It was also desira- 
ble to investigate in detail the characteristic equations for all admissible values of para- 
meters and to give a spectral dis~ibut~~ of solutions. In this framework the problem of 
longitudinal translational oscillations of an elastically coupled rigid plane in a viscous 
fluid (mathematically this is identical to the linear problem of rotational oscillations 
of an infinite flat disk) was studied in paper [3], Some results of this work are utilized 
below in the investigation of the spectrum of oscillations of a sphere in the problem of 
Venchaffelt. 

1, Potmulrtion of the probtam. A rigid sphere with a radius R, is suspen- 
ded by an elastic thread of rotational stiffnessM,and executes small rotational oscilla- 
tions in the homogeneous fluid with a viscosity tl* and density t+ 

The fluid is bounded by a concentric and, with respect to the rigid sphere, stationary 
sphere of radius R*’ > .R** On the surface of the rigid sphere and also on the external 
boundary the condition of adhesion is satisfied, The moment of inertia of the sphere is 
equal to K,. At the initial instant the sphere and the fluid are at rest. The sphere in this 
case is twisted with respect to the equilibrium position by an angle AO. 

Subsequently the fluid is perturbed into motion only by the sphere. It rotates in unde- 
forming spheres (the angle B, is so small that the convective terms in the acceleration 
of the fluid are ~igni~c~t in comparison with the local term), The desired angular 
velocity W* of these spheres depends on time t* and the radius r, I R,’ > r, > A,. The 
angular velocity of the sphere oO* It*) - o* (t+, R,). 

The asterisk denotes quantities of nonzero dimension, The parameters Ao, R@*‘Y KS!, 

M,, q*and p.,are positive. M,can be replaced by parameter 4*= 6M* I K, + 
Let us introduce the following nondimensfonal quantities : 

The solution of the problem will be understood to be a function 0 (t, r) satisfying the 
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f5IIowing ~diti~ l 

1) Function 0 (f, r) is cont&mous in (d >r 0, r, > r > 1) and becomes zero for f = 0, 

r,>r&iid t)IO,~=re+ 
2) In (a > 0, re > r 2 1) contfnuous derivatives q, or, arr exist and the foIlowing 

equation is satisfied Of= v (o,, + h-1 0,) W) 

3) The quantity f~ ft, 1) z w, (9 fcu t > 0 satisfies the folXow$ng equation : 
t 

The unfqueness of such a function follows hrom energetic considerations. 

by a Laplace-MeIl$n integral 

It is easy to check that o (t, r) is continuous together with wr in (t > 0, re 3 r > f) 
and will be an analytical function of t and r in (t > 0, re 3 r > 1). The derivative at 
is continuous as a function of t for any r, r, 2 r >/ I, bat suffers a discontinuity as a 
function of f at the potit t = 0 II .r = i, because 

9 (0, 1) = - 4 < 0, ml (a, 1 f 01 - 0 
3. Invartfgrtlon of the apeotrum, The expressions o = Re [@*Lc(z, r)l 

for some u: (z, r) satisfy all. conditions of the formulated problem with the excepdon of 
the condition of o (t, 4 becoming zero fez I = 0, then and only then, when.2 = k, where 
k is any root of the functfon “p (z).In this. srme th; roots q~ (z) will he points of the spec- 
trum of the problem (completely discrete). We shall elucfdate how they are distributed 
in the plane z. 

We introduce the parameters h = fi x = q I L, % = (r8; - i)/A . We fix x > 0, 
% > O,varying the parameter il in the interval [0, &I, where X, js an arbitrarily fixed 
positive number. Let us represent Qt [zl 34 m rp (4 through a ratio-of singlevalued entire 
functions of z, which can be expanded in powers of z in series with real coeffi&ents _ 
These functions are continuous as functions of two varfables 5 and k 

0 (z, n) = @Da (2, h) : ah (2, h), @a (8, M = P II*/, (4 Kg,s(b) - ‘t/,(b) Kaj8 WI 

(Da ($9 I.) = (za + 1. -t- % hxz) @I + ~1”” 1/i V,, (b) fL,; (4 - A,, (4 G,, (QJ 

&= V’rn/% o=brB= (if.h+Q vii, b=)il If: 

@iI F4 v ==~PIfO,~)==~-f--t/(~Cl~f>O 

We note that 0,and Ca, for any 3, > 0 do not have common roots in the plane 4 
The latter follows, e. g. from equality 
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For h =2 0 

It was proved [3] that roots tDZ (z, 0) are all included in a denumerable set of simple 
negative roots kl > k2 > . . . and two roots &, &a, which are negative (in this case it 
is possible that &I, = km) or complex conjugate with a negative real part. The roots 

5, = - n2f%2, n = 1, 2, . . . , of the function @I (z, 0) are separated by roots @, (z, 0) 

0 >Ci>k,>C,>k,>... 

In the plane z let a sequence of circumferences I,,, be constructed, m = 1, 2, . . . , 
with the center z = 0 and a radius which increases without limit. For this sequence the 

functioncth (5 fiyis uniformly bounded on all Tm. Since on rrn for m -V 00 with re- 

spect to h E IO, &I 
CD, (2, h) = sh$!!i’ [I + 0 (i)], 

z 
Dz(z, ~)=~z I/‘:sh(< I’-i)[i--\-o(l)] 

are uniform, then for sufficiently large numbers m starting with some m, the functions 
@I (z, I.) and @, (z, h) do not become zero on r, for any values of h E [0, ho], i.e. the 

trajectories of roots of functions O,,and@, in the plane z in the caseofincrease inh in the 
indicated interval do not intersect l;n. Let us hold fixed any circumference TP, p > mN 
and let us observe the motion of roots keeping in mind the fact that imaginary roots of 

each of the functions @,, (2, A) and a, (z, h) in the plane,z can occur only in the form of 
conjugate pairs,while a1 and 9, do not have common roots. Apparently,when h increases 
in the interval [0, &J the roots 0, and @‘z move in the plane z in such a manner that 
just as for h = 0 all roots of ‘Qp, inside.r, remain simple negative and separated by 
roots of Q, while the number of imaginary roots of CD, is equal to two or zero. From 
readily formulated energetic considerations it follows that the real part of imaginary 
roots of Q2 is negative. Under these conditions examination of possible alternatives of 

locations of roots of CD, in the plane z (it is easy to show that they are all realized for 
some positive values of parameters) finally leads us to the following conclusion. 

For positive X, 5 and h the function cp (z) has a denumerable set of simple poles <nm, 

0 > 51> 52 > . . . . This set includes all poles of cp (z). In each of the intervals (&HI, 

&J, n = 1, 2, . ‘. . the function cp (z) varies from + m to - =. In this connection in 

each interval (&,+1, mn 5 ) with the exception of perhaps one (&+I, Cj)l where ‘p (z) has 

three zeros ko2 < k,, < kj, the function cp (z) has one and only one root k,, q’ (k,) < 0, 

n # j. The roots of cp (z) are all included in negative roots k,, n = 1, 2, . . (the value 

n = i is taken into account) and two roots k,,. ko2 which are outside the interval (&, 0) 

for 0 <x <x0 ,or on (Cl, 0) for ‘X >-x0 (the quantity r.,, is determined by values of 

parameters E > 0, h > 0). If kOr e (ir, O), Loco, (L (;,. 0), the roots k,,, k,, are either 
imaginary k,,= kWZ= -cc+ Si (c>O, B>O), orreal, <jkl<k,,<ko~<kj<& 

(the value i > 1 depends on parameters). 

4. Spectral dirtrfbution of the angular velocity of the aphsre. 
On the basis of obtained information about the spectrum, all types of spectral distribution 
of angular velocity of the sphere are determined by contour integration with utilization 
of circumferences r, (for z --) ~1 on all Im by construction cp (z) = z2 i 0 (i2)) 



Linear problem d rotational oscillations 289 

q For kol = q, = -a+ $h a>o, p>o 

00 (t) = noe-OLf cos (pt +&J + 5 a,ek?2 (4.1) 
?a=1 

$:-&>o, ao=- ,$&, , 60 = - a rg cp’ (kol) 

2) For Pj+l < km < kOt Q kj < 51 
00 (t) = Sj $ Z(j) G$fZrin” cf4.2) 

In Eq. (4.2) the symbol Z(j) designates summation over all values n > 1 with the 
exception of the value i. For R + j the coefficient a, =f - A0 / cp’ (k,) > 0. The sum 
of residues of function - AoeZf / ‘p (z) with respect to kj, kol, km is designated by Sk 
If Pjct <b <'kol< kf < C&then 

sj= aj(l)ebjt .+ ,i(af,kd + ajfst &t 

a.(l)= 
3 - Ao/(~'(kj) > 0, .j(a) = - Ao/(~'(kol) <OS 5 @)=- Ao/cf(koz)>O 

If CJ.+X < km = kox <-kj C 5jl then 

sj = a jl) e’Ejt + a .W te”;(fsf f Q fat &d 

(I)= 
4 q$j)>o. uj@)=-*<20, u~~_~~~,,,ko~~~,;-P~,,..-_nj”l<O _ - 2A cp”‘(k ) 

If 5j+t < ~OZ < ko, = kj < Sj, then 

Sj = ai(l) tekj’ + aj(~) ekjf + uj(a) eW 

3) For CI < koz d ko, < 0 

oo(t)=&+ 5 "&y a, =-gpo (n>1) (4.3) 
n?q 

"" = - cp’(k& 
.-A?- < 0, .,(a) =r - $-& > 0, QoW = _ ,p _ fj a, 

n==l 

a,(l) =: ----a <O, u,(~)= - $j an= 
2AoV’ (kod 

3 [cp” (kodla < ’ 
n=1 

For ra -, 00 it follows from elementary calculations that 
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Equations (4.4) show that for i > 0 the series (4-l)-(4.3) can be differentiated term 
by term an innumberable number of times, forit = 0 once. All derivatives with respect 

to o,, (t) starting with the second tend to infinity as t 3 0. Separating the principal 

terms for t-+ 60 in series (4,1),(4.2) and (4.3) we establish the following. If roots &: 
and km are outside of the interval (cl, 0), the sphere passes through the equilibrium posi- 

tion odd and finite number of times, or an infinite number of times. If roots kai and km 
belong to the interval (iI, 0), then the sphere does not pass through the position of equi- 

librium but only approaches it monotonically and indefinitely with an angular velocity 
which does not become zero for t > 0. 

We note that this derivation applies also to the analogous problems of small rotational 
or lon~itud~al oscillations of an elastically coupled rigid plane in a viscous fItsid. boun- 
ded by stationary walls which are parallel to the oscillating plane p], or of an infinite 

cylinder in a fItrid bounded by a stationary coaxial cylindrical wall. The analysis for 
the infinite cylinder does not differ substantially from the one carried out in this paper 

and leads to the same basic conclusions. 
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Transient strain wave propagation in elastic shells and plates caused by an effect (appli- 
cation of loading, communication of displacements or velocities) which grows to a maxi- 
mum or exerts influence in a time interval less than the time of strain wave traversal of 
a path equal to the characteristic dimension of the middle surface is considered on the 

*) Material of a paper expounded by the author in two reports to the Third All-Union 
Congress of Theoretical and Applied Mechanics (Moscow, Jan. -Feb., 1968), and summa- 
rized in a report to the XIIth International Congress of Applied Mechanics (Standford, 

August, 1968). 


